APPLICATION OF ORACLE DATABASE FOR THE VUV-FEL DAQ SYSTEM

G. Dimitrov /Oracle9i DBA Certified Professional/ (PITZ) DESY, Germany, Dr. V.Rybnikov, DESY, Hamburg Germany

Abstract

One of the important issues in Data Acquisition System (DAQ) design is the type of storage for all kind of information used by the system. For the VUV-FEL (Vacuum-Ultraviolet Free Electron Laser) DAQ we have chosen ORACLE Relational Database Management System (RDMBS). The database stores not only the DAQ relevant information, but also control parameters for the LINAC. Data flow overview is shown in Fig.1

The paper presents the database structure and gives application of the stored information by the DAQ in detail.

INTRODUCTION

The RC database is the primary place for storing LINAC and DAQ configuration information. All configuration data follow the LINAC run modes [1]. The RC DB design foresees an easy way to extract all configurations for a certain run mode. This is achieved via the data base layout, which on one hand allows storing run mode specific information and on the other hand doesn’t duplicate the common information used by all run modes.

Some LINAC and DAQ parameters can be associated with so called run parameters. The modification of a run parameter leads to the change in corresponding LINAC and DAQ parameters.

Every run mode usually has several setting versions that allow having the machine or the DAQ with different parameters within the same run mode. The new setting versions are stored by the operators after the machine optimization. Those settings can be reused in next runs.

The Run Controller makes use of the run mode setting versions to bring the LINAC and the DAQ in the corresponding mode.

Run Controller

The Run Controller (RC) [1] configures the systems participated in a run through the Distributed Object Oriented System (DOOCS) API [2] calls. It is responsible for configuration of both DAQ and LINAC parameters according to the LINAC run mode. The procedure of setting up a LINAC run consists of the following steps:

1. RC gets list of all run modes configured in the DB
2. the operator selects a run mode and a setting version of the machine from the DB
3. the operator can also select a set of subsystems within the selected run mode (e.g. some systems can have problems or their data is not included in the DAQ data flow).
4. some run parameters can be modified and sent to the RC
5. RC distributes the configuration information to the servers, brings Finite State Machines to the states according the definitions made in the DB. DAQ is being configured as well.
6. A new run number is generated. The machine is ready to produce the beam.
7. The timing system swatches on the beam production and event collection.

IMPLEMENTATION

The RCDB layout is shown in Fig.2. The data is well structured logically in tables. Basic definitions are kept in set of tables making up the catalog of definitions (the data is more or less static, supposed to be changed rarely). The actual values for the run mode setting version and run parameters are stored in 2 separate tables foreseen to have very large number of records /tens of million/. Therefore partitioning is applied for them. Partitioned tables allow data to be broken down into smaller, more manageable pieces called partitions, thus providing a structure that can be better tuned for availability and performance. [6]

Integrity is provided through the use of such constraints as primary keys (unique identifiers that distinguish each row in a table), foreign keys (define special relationship between two tables), UNIQUE, NOT NULL and CHECK

Run Control Data Base schema

The RCDDB consists of the following entries:
- Regular tables of type HEAP /unordered collection/ for storing data.
- Indexes – objects, used to improve performance on SELECT statements
- Sequences – named sequential number generators, used to generate unique primary keys
- Stored PL/SQL procedures – compiled once and stored in executable form, so procedure calls are quick and efficient.
- Views – stored SELECT statement
- Packages - encapsulated collection of related program objects such as procedures, functions, user types

PL/SQL stands for “Procedural Language extensions to SQL” and provides procedural constructs, such as loops and conditional statements, that are not available in standard SQL [4]
Oracle Database to Run Controller interface

Interface between Run Controller and the Oracle DB is shown in Fig. 3.

Figure 3: Interface between Run Controller and Oracle

An RC_oracle C++ class using Oracle C++ Call Interface (OCCI) API and provides several methods for interaction with the database for:

- Retrieving data - run modes list, basic definitions related to a chosen run, run parameters and machine setting defined for a certain run mode version and so on.
- Storing data:
 - machine values as new setting version of the current run mode;
 - run history information;
 - creation new parameters;
 - changing stream configurations

Run Controller Database GUI

The Run Control Database GUI is a standalone application written in Java using NetBeans 3.5.1 IDE [5].

DB client GUI gives a lot of possibilities for creating and configuring run modes and all attributes related to them. A part of the main dialog is shown in Fig. 4.

User specifies run mode name, corresponding data version name and some comments to them. Each run mode must have one ‘default’ setting version. Next step is to add to the run tree ‘device groups’ and ‘run parameters’. The device groups and run parameters have to be predefined by the user in the DB via some additional dialogs. Navigating through the run mode tree one can easy see all properties for a certain device location and the values specified for them. The GUI supports most of the DOOCS data types and structures for data manipulation of the properties (e.g. INT, FLOAT, STRING, BOOL, IIII (4 INT), etc.) Access mode can be Read, Write, Read Write, Configuration and Check. They require different handling from the RC.

User can easily create a new run mode through the copying the tree structure and run parameters of an existing run mode into the new one, and after that modify its content to the desired structure. That can be done via adding new elements from the pattern Facility/Device/Location/Property tree to the run mode tree. Additional feature is creating a new run setting version by copying the values from an existing one and modifying the values to the desired values.

Figure 4: part of the RCDB GUI main dialog
All DOOCS names which consist of Facility, Device, Location and Property names may be included in the DB either if a corresponding process is running or even if such a name doesn’t exist or the corresponding DOOCS server is down.

Facility, device and location part of the name specifies a server process. These names are resolved by Equipment Name Server (ENS) [7] which give the real address of the DOOCS servers. The DOOCS properties in the DB can have one of the following access modes: Read, Write, Read Write, Check and Configuration.

Data Stream Configurator

The task of the Stream configurator is to assign event consumer processes, slow channel properties and fast channels properties to certain data streams on the run mode level. Streams construct logically lists of channels. Every list presents a data flows handled by distributor and event builder processes [1].

Data Stream Configurator is a Web based application written in PL/SQL using Oracle Forms Development Environment. Typical three-tier architecture is in action – Web client (browser), an application Web Server and Oracle Database server. The browser on the client side uses HTTP to communicate with the Web server to make a connection request. Application on the web server processes the request and sends it to the DB server.

CURRENT STATUS

The RCDB is being used for the DAQ system tests since autumn 2004. At the moment there is one run mode configured, that includes all required DAQ and LINAC processes to provide the beam from the injector up to the undulator. The number of properties for this mode made up ~ 4300 entries. To boot this run mode to the RC takes ~ 4 sec. To save a new setting version from RC to the DB is about 4 sec. We don’t expect the increase of the boot and storing time even in case of several times increase of properties. The way we achieve that is by fine database tuning:

- All indexes are stored in a tablespace (logical database structure) on different I/O drive separately from the storage where the tables are located

- SELECT statements are written in a way to avoid full table scans for the large tables, so that the processing time doesn’t depend on the number of records

- Performance gain in storing data is achieved by developing different PL/SQL procedures and packages. Avoid loops using intensively collections (ordered group of elements) with BULK SELECTS, INSERTS, UPDATES or DELETES statements.

CONCLUSIONS

- All DAQ configuration data is on one secure place.
- No duplication
- Data integrity is preserved
- The data is well structured and easy for storing and retrieving.
- Oracle RDBMS provides a lot of possibilities for easy object development and maintaining.

REFERENCES

[1] V. Rybnikov, “Data acquisition system for VUV-FEL LINAC”, these proceedings