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1 Introduction

The aim of beam based alignment techniques is to determine the relative
offset between a beam position monitor (BPM) and the magnetic axis of a
quadrupole (or sextupole) magnet by means of beam observations. While the
offset information can be used to improve the mechanical alignment of ac-
celerator components (e.g. with micro movers) it is often sufficient or even
equivalent to correct the alignment errors by means of corrector magnets, i.e.
the offset information is the basis for improved trajectory corrections. There-
fore beam based alignment procedures mediate between classical accelerator
alignment and orbit correction techniques.

Different beam based alignment methods have been developed for linear accel-
erators [2] and for cicular machines [3]. The primary goal of these techniques,
however, is not to keep the beam on a given orbit, but to minimize distortions
that result from orbit deviations, for example emittance dilution. On the con-
trary, in case of the FEL the aim is to keep the beam on a straight line in
order to maximize the interaction of the photon field with the electron beam.
According to simulation studies [4] the rms orbit deviation of the electron
beam with respect to a straight line has to be below 10 ym at least over the
length of one undulator module (4.5m). The planar undulator consists of a con-
ventional permanent magnet structure with superimposed permanet magnet
quadrupoles, which are expected to be the dominating source for orbit kicks
[5]. Beam Position Monitors (BPMs) and corrector magnets will be integrated
into the vacuum chamber of the undulator in order to allow for a correction
of the orbit. Table 1 summarizes relevant parameters of the undulator and
the beam optics. Since the quadrupoles are made of permanent magnets they
are fixed in strength and position. Besides the strength of individual corrector
magnets only the beam energy can be changed. With respect to beam op-
tics, this is equivalent to changing the strength of all magnets simultaneously.
Unfortunately the betatron phase advance inside the quadrupole magnets is
rather large, i.e. it is not valid to simplify the problem by means of a thin lens



Table 1
Undulator and optics parameters for the TTF FEL (Phase I) [1].

undulator

number of modules 3

length of module 4.5 m
period length 27.3 mm
undulator peak field 05T

rms field error AB/B <4x1073

number of quadrupoles per module | 10

length of quadrupoles 136.5 mm
distance between quadrupoles 341 mm
offset error < 50 pm
corrector length 300 mm
integated strength 25T
focal length 0.4 m (at 300 MeV)
optics (at 300 MeV)

Bmax 1.5 m
Bmin 0.5 m
phase advance per FODO cell 65°
betatron wavelength ~6.3 m

approximation. Additional constrains arise from random dipole errors gener-
ated by the undulator and the very tight tolerances for the overlap of the
electron beam with the radiation field in case of an FEL.

This paper presents a detailed discussion of a local correction procedure while
a global procedure is discussed in Ref. [6]. A comparison of both methods
is found in Ref. [7]. It should be noted that alternative approaches for the
alignment problem, using for example synchrotron radiation, are under con-
sideration which will not be discussed here (see Ref .[8]). In the following we
will concentrate on the case of a low beam energy of 300 MeV (Phase I of the
FEL experiment) since the situation is more relaxed at higher beam energies.



2 Orbit Deviation due to Uncorrelated Quadrupole Magnet Mis-
alignments

If a quadrupole magnet lattice is superimposed to the undulator, the orbit
distortion due to random field errors grows in a significantly different way.
Due to the presence of focussing fields, there will be a tendency to bend the
distorted orbit back to the axis, resulting in a much slower growth of the
distortion’s amplitude. This effect sets in after approx. p = /2 betatron
phase advance. Thus, the tolerances on field errors have to be determined
in a different way if the level of tolerable orbit distortion is exceeded within
pu < /2 (i.e. before focussing becomes effective) or if not.

Consider the orbit displacement due to N dipole kicks. In the following we
assume that these kicks are generated by quadrupole misalignments dz; (a
generalization is simple). With s being the longitudinal coordinate and f; the
focal length of the 7th quadrupole, the orbit displacement is given by
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where the latter equality makes use of a smooth focussing approximation and
[ is the beta-function. Since we do not know the specific error distribution,
we can only perform a statistical analysis. Assuming, for simplicity, a periodic
FODO lattice with equal focal length f of all quadupoles and uncorrelated
errors, the mean squared orbit distortion at longitudinal position s is given by
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For a lattice with small betatron phase advance per FODO cell jicey < 7/2 we
can write (I4 is the drift space between quadrupole lenses, — we use thin lens
approximation)
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Fig. 1. Orbit deviation due to errors with (solid line) and without focusing (dot-
ted line). The phase advance pe per cell has been chosen equal to w/3 and the
quadrupole misalignment 20 pm.

) = (1 = ) o) 0

2#(5 ) Heell

For p(s) > m, this scales like (Zms($)) o< 1/p(s) o /s, while for u(s) < =

8u(s)312
Toms(5) 0, [ 31;(81 ] o 1u(5)? o 597 (2)

It is easy to see that this latter case is equivalent to the case of no focussing:
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which is indeed identical to eq. 2.

Fig. 1 compares the case with focusing (Eq. 1) and the case without focusing
(Eq. 2). The phase advance per FODO cell is /3 and the quadrupole offsets
are 20 um rms. The specifications of the FEL are exceeded within the first
FODO cell. Consequently, correctors are required within a cell, and with re-
spect to the orbit correction one does not profit too much from the presence
of focusing.



3 Modelling and Simulation of the Undulator

Based on the statistical arguments given in the previous section, one can
estimate the minimum number of correctors needed to keep the rms orbit de-
viation within the required tolerance of 10 um to be one per FODO cell. In
general one will need more correctors in order to compensate for additional
errors, i.e. BPM offsets which are not taken into account in the previous es-
timation. The procedure discussed in the following requires one BPM and
one corrector per quadrupole. A reduction of both elements is possible with
the global procedure (Ref. [6]) only. In order to simulate possible procedures
of alignment, a computer code has been developed. It contains the following
features.

e Beam position monitors. The BPMs have no longitudinal extension in
the code. They have a random offset and a given resolution. Note, that in
reality the BPMs consist of two elements which are longitudinally separated
by about 70 mm because of the geometrical constrains in the undulator gap.
The total space needed per BPM is approximately 110 mm.

e Corrector coils. In the code, correctors can have an arbitrary position
and strength. The length of the corrector is 300 mm. A minimal distance of
~b5 mm between the BPM center and the corrector entrance is required in
reality due to the finite BPM length, space for cabling etc.

e Dipole errors. The ideal undulator field is sinusoidal. In addition to that
ideal field, random peak field errors are added each half period. This is
only consistent with Maxwells equations on the optical axis. In order to
include magnetic field correction procedures, the second field integral can
be corrected over an arbitrary distance.

e Quadrupole misalignment. The quadrupoles can have an arbitrary mis-
alignment in z or y direction by adding a homogeneous random displace-
ment within predefined boundaries. A longitudinal displacement or an error
in quadrupole gradient has not been included. The quadrupoles are assumed
to have ‘hard edges’, i.e. the field goes to zero instantaneously at the en-
trance/exit of the quadrupoles. A thin lens approximation is not used. *

The length of correctors and quadrupoles are given in terms of half undulator
periods (therefore the thin quadrupole lens can be approximated by taking this
minimum length and adjusting the gradient to obtain the same focal length).
Although quadrupole lengths and positions as well as BPM and corrector posi-
tion can be chosen arbitrarily in the code, the simulations performed here only

* If the focal length of the quadrupole lens is much larger than its geometrical
length, the phase advance in the magnet is small and the lens can be described
using only linear dispersion. In this description, the lens has no geometrical length
and the beam is kicked with a strength inversely proportional to the energy of the
beam and independent of the incoming beam angle.



include periodic structures. Furthermore, it is assumed that the two transverse
planes can be described independently and only the wiggling plane is studied.
A schematic layout of the features included in the program is shown in Fig. 2.
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Fig. 2. A schematic overview of the beam based alignment procedure described
in this paper. At the BPM positions, the beam continues in the direction of the
incident beam. In between, there are deviations due to the undulator (dipole) peak
field errors.

4 The Algorithm
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Fig. 3. Example of a beam trajectory before (solid line) and after correction (dashed
line). The rms orbit is 16.6um after correction.

Since no external reference line exists for the beam based alignment procedure
the question arises to which line the beam can be aligned? The procedure



discussed below forces the beam onto the extrapolation of the incoming beam
trajectory. Thus the straight line is defined by the position and angle of the
incoming beam (see Fig. 2). At the end of section 5 it will be shown how the
incoming beam position and angle can be corrected, so that the beam passes
trough the average quadrupole axis. The beam with initial condiotions xy and
xy at the entrance of the undulator is given in the thin lens approximation by:

K, D; C
:v1:w0+x6-s+7q-sq+2j-si+g-sc (3)
3

at the next BPM. Here K,/p is the kick generated by the quadrupole, D;/p
are the dipole kicks and C'/p is the kick of the corrector. The momentum of the
beam is denoted by p and s4, s; and s, indicate the distance from the element
to the BPM. Note, that K, is independent of energy only if the position and,
in case of a thick lens, also the angle of the beam at the quadrupole do not
change with energy (see Fig. 2). At the entrance of the undulator this can
easily be achieved by means of two BPMs and two correctors which allow
to decouple the dispersion generated in the undulator from the dispersion
generated upstream in the linac. However, rather than using the correctors
for a correction of the incoming dispersion and hereby fixing the beam angle
and position at the undulator entrance, the excitation of the correctors will be
changed when the energy is changed so that an arbitrary position and angle
can be realized with a dispersion free behaviour. In order to reduce Eq. (3)
to: x1 = xo + 7 - 8, i.e. to force the trajectory onto the extrapolation of the
incoming beam trajectory the sum of all kicks, weighted with the distance to
the next BPM, has to be zero. Obviously this is the case when the measured
beam position at the next BPM is independent of the beam energy. If the BPM
is located at the next quadrupole, Eq. (3) applies for the next section with K,
being independent of energy. Therefore the beam can be forced onto a straight
line at the positions of the BPMs if a BPM is located at each quadrupole and
one corrector per quadrupole is available. (It will, of course, deviate from a
straight line in between the BPMs.) Note that while the position at the BPMs
is independent of energy the angle will in general slightly change when the
energy is changed. The variations of the beam angle in conjunction with the
thick lens behaviour lead to a slow drift from a straight line which is typical
for local alignment procedures. This bowing has no significant influence on the
FEL performance, since the drift length is large compared to the gain length
in most cases. In section 5 a possible correction procedure is discussed.

A simple way to determine the required excitation of the corrector coil is to
measure the beam position at the next BPM as function of the excitation for
two different energies (typically with 10% energy variation). The intersection
of both measured lines indicates the required corrector setting. The lines can
be determined with very high accuracy even if the BPM resolution is not very



good by taking more measurement points.

Since the beam is forced to follow the incoming beam vector its trajectory
can in principle be far off axis at the end of the undulator. In this case, the
corrector settings will show a linear growing amplitude in order to compen-
sate the quadrupole orbit kicks. Therefore, a beam trajectory far off axis can
be detected and corrected in a second step. Similarly, it is also possible to
indentify misaligned individual undulator modules (see Fig. 10), i.e. one gets
relevant information for mechanical realignment.
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Fig. 4. The rms orbit averaged over 100 samples as a function of position of the
BPMs with respect to the quadrupole center. The distance between BPM and cor-
rector entrance is two undulator periods in all cases, the BPMs are assumed to have
perfect resolution. The second field integral has been corrected along the undula-
tor axis every 10 undulator periods. The energy difference in order to measure the
dispersion has been chosen equal to 10%.

Fig. 3 shows as an example a beam trajectory before and after correction.
The rms orbit is 16.6 um. In the following, the influence of the longitudinal
BPM position (relative to the quadrupole position), the BPM resolution and
the corrector position will be discussed. In the simulations of which results
are shown each point represents the average and standard deviation of 100
random seeds, respectively.

5 Results of simulations.

The first set of simulations (see Fig. 4), determines the optimum position of
the BPM with respect to the center of each quadrupole. The space needed for
the beam position monitors is approximately 110 mm. Therefore, the distance



between BPM and corrector has always been chosen equal to two undulator
periods, i.e. BPM and corrector are shifted as a block with respect to the
quadrupole. The minimum rms orbit always occurred with the BPM at the
quadrupole center. The minimum values varied between 8 and 30 ym for a
beam energy of 300 MeV. Correcting the second field integral did not only
reduce the required corrector strength, but in those cases where the rms orbit
was still large, this value was also significantly reduced.

The BPM is positioned
at the quadrupole center
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Fig. 5. The rms orbit as a function of distance between BPMs and correctors. A
distance of zero corresponds to the case when the corrector starts at the BPM
position, which is taken at the quadrupole center in all cases. A distance of two
undulator periods corresponds to the T'TF case. The second field integral has been
corrected along the undulator axis every 10 undulator periods. The energy diffeence
used to measure the dispersion has been chosen equal to 10%. The dotted line
indicates the nominal distance between BPM and corrector.

Although the distance between BPM and corrector cannot become zero, be-
cause a certain amount of space is needed for connections etc., it is important
to see what amount of reduction of rms orbit could be achieved if one would
put effort in reducing the distance between corrector and BPM below 2),.
Results are shown in Fig. 5. Reducing the distance to values smaller than the
two undulator periods assumed in the previous calculations does give a further
reduction. However, if the rms orbit is already small, the additional reduction
is moderate, while an increased distance leads to significantly poorer results.

Fig. 6 shows a histogram of 1000 random distributions of quadrupole offsets
and dipole field errors. The BPMs are located in the quadrupole center and
the distance between corrector and BPMis 2),. The mean value, 16 ym in this
case, does not correspond to the value with the highest probablility (12 pm).

The corrector strength needed for the case with the BPM in the quadrupole
center and the distance between BPM and corrector entrance of two undulator
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Fig. 6. Histogram showing the rms orbit of 1000 samples of random dipole errors,
quadrupole displacement and BPM offsets. All remaining simulations have been
performed with 100 samples out of these one thousand, giving approximately the
same average rms orbit.

periods is shown in Fig. 7. The most obvious result is an increase of the
corrector strength along the undulator. This effect, as well as the increasing
of the rms orbit when the distance between BPM and corrector is increased,
is caused by the bowing of the trajectory due to the variation of the beam
angles at the quadupoles as discussed in section 4. It can be minimized by
putting correctors on top of the quadrupoles, so that the dominant kicks are
locally compensated and the angles are reduced.

In Fig. 8, a result is shown when the corrector has the same length as the
quadrupole and they completely overlap. This is equivalent to the case where
the quadrupoles can be moved with micro movers. The BPM is positioned at
the quadrupole entrance. The second field integral has been corrected every
5 undulator periods. In case of correction every 10 periods, the quadrupole
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Fig. 7. Corrector strength needed to get the beam on axis for a displacement of
quadrupoles of 50 um and an incoming beam being perfectly on axis.
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Fig. 8. Histogram showing simulation results with correctors completely overlapping
the quadrupoles. The second field integral has been corrected every 5 undulator
periods. The energy difference chosen to measure the dispersion has been chosen
equal to 10%.

displacement does not dominate the dispersion enough to show a significant
decrease in the rms orbit. The mean value is reduced to 7 um, thus the pro-
cedure is limited in case of the TTF-FEL by the fact that weak and rather
long correctors do not overlap with the quadrupoles. This leads to energy de-
pendent angles in the quadrupoles, that act as thick lenses, and a deviation
of the trajectory from the ideal straight line.

Simulations so far assumed a maximum quadrupole displacement of +50 ym.
Most likely, however, the alignment can be more accurate than this. With
a smaller misalignment, the overall rms orbit decreases. Furthermore, the ex-
pected corrector strength becomes smaller. The smaller the effect of the dipole
errors, the larger the reduction in the rms orbit. If the quadrupole misalign-
ment is decreased from +50 yum to +10 um, the rms orbit reduces by about
20%. The current needed for the correction reduces by about the same amount.
With the method described in this paper, a further reduction of the rms orbit
is only possible by decreasing the effect of the dipole errors.

The results that have been shown so far involved perfect BPMs. Fig. 9 shows
results of the influence of the BPM resolution on the rms orbit. There is a
slight increase in the rms orbit, but this can in principle be compensated by
taking more measuring points.

11
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Fig. 9. rms orbit as a function of BPM resolution. The slight increase can be com-
pensated by increasing the number of measurements. The second field integral has
been corrected every 10 undulator periods. The energy diffeence used to measure
the dispersion has been chosen equal to 30% for all but perfect BPMs.

Correction of incoming beam position and angle and module displacements.

The TTF FEL undulator consists of 3 modules each of 4.5m length (6 mod-
ules in the final version.) In order to assure an accurate alignment of the
quadrupoles within each module (and also from one module to the next) a
12 m long measurement bench has been set up. Two neighboring modules will
be measured at a time and alignment fiducials will guarantee a high align-
ment accuracy of the modules in the tunnel. Displaced modules may never-
theless lead to correlated quadrupole displacements. Since the modules will be
mounted on micro movers their position can in principle be corrected remotely.

12
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Fig. 10. Corrector strength after beam based alignment procedure in case of a
displaced module. The upper plot shows the effect of an offset of nodule 3 (100 pm)
and the lower plot shows the effect of an angle (100 urad). Module 3 extends from
corrector 20 to 30. The linear correlated part of the corrector setting is clearly
visible.

The beam based alignment procedure forces the beam onto a straight line
defined by the position and angle of the incoming beam. A displaced module
shows up in the corrector settings as linearly correlated contribution of the nor-
malized corrector strength. The normalized corrector strength is the corrector
strength times -1 if the corrector is correcting a defocusing quad and times +1
if it is correcting a focusing quad, respectively. Figure 10 shows the corrector
strength in case of a displaced module. The upper plot shows the effect of an
offset of module 3 (100 pm) and the lower plot shows the effect of an angle
(100 prad) (Module 3 extends from corrector 20 to 30.) The linearly correlated
contribution to the corrector setting gives a clear signal for the displacement
of the module. Similarly the corrector settings show a linear behavior over
the length of the whole undulator if the incoming beam has an angle or an

13



offset with respect to the average quadrupole position. Appropriate scaling
factors between corrector setting and geometrical module displacement can
be derived either from simulations or be determined experimentally, so that
the incoming beam position and module displacements can be corrected.

Correlations similar to incoming beam errors can be generated by the beam
based alignment procedure itself, since small variations of the beam angle at
the entrance of the (thick lens) quadrupoles may lead to a slow orbit drift.
Although this does not influence the FEL performance, since the drift length
is large compared to the gain length in most cases, it is still useful to look at
ways to compensate for this drift. One way is to use the correlations between
corrector strength, as described before, another one is to use an independent
measuring system, with only a few monitors along the entire undulator, which
are referenced to an external measuring line. In case of the TTF-FEL, a wire
scanner system with external reference marks between the undulator modules
will allow to control the beam orbit independent of BPM’s.

6 Discussion

Beam based alignment procedures can in general be affected by numerous
error sources like:

calibration (scaling) errors of the BPMs
non-linearities of the BPMs

calibration (scaling) errors of the corrector magnets
hysteresis and saturation of the corrector magnets
error accumulation in a long beam line

incoming beam jitter

motions due to temperature variations

Fortunately the algorithm does not rely on an accurate calibration of the
BPMs and corrector magnets since no absolute measurements are required.
In order to keep the effect of non-linearities of the BPMs small the scanning
range has to be kept small. In the simulations the beam position in the BPMs
were kept below +1mm during the scanning procedure. It is expected that
the BPMs are highly linear within this range. Saturation of the corrector
magnets could be taken into account if it occurs but hysteresis would be a
problem. Since the corrector magnets are basically air coils and the iron of
the undulator surrounding the coils is highly saturated both effects should
be negligible. Measurements to check the saturation and hysteresis effects are
under preparation.

14



In the procedure each beam line element between two BPMs is corrected in-
dependently of all the others. The only assumption is that the incoming beam
position is independent of the beam energy which can be checked within the
accuracy of the BPMs at each position. In that sense no errors accumulate due
to the procedure. The problem of correlated displacements of the quadrupoles
(i.e. a displaced module) and/or an angle or offset of the incoming beam can
be attacked by using a straight line fitting algorithm to the steerer strength
after the first alignment procedure.

The jitter of the incoming beam is expected to be small. The effect of incoming
beam jitter on the beam based alignment procedure is similar to the effect
of noise in the electronics of the BPMs. It can be corrected by averaging
over several shots. Since the BPM signals are digitized and hence limited in
resolution a small noise level (of the order of the ADC resolution) is in general
useful, since it allows to improve the measurement accuracy beyond the ADC
resolution.

During the scanning procedure the rather weak corrector magnets will be
excited to their maximum current. Since the correctors are integrated into the
vacuum chamber the chamber will be heated which might eventually result in
a motion of the neighboring BPM’s. The scanning is, however, fast and the
corrector windings are directly water cooled. In addition the mechanical design
will minimize motions of the BPMs, so that the overall effect is expected to
be negligible.

In conclusion it can be said that the discussed beam based alignment procedure
is expected to be very robust and insensitive to most of the effects that can
occur in a real accelerator environment. It complements a global alignment
procedure which is described in Ref. [6].
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