Measuring the Higgs mass at TESLA

P. Garcia-Abia∗, W. Lohmann† and A. Raspereza†

∗CERN 1, EP Division, J21300, CH–1211–Geneva 23, Switzerland
†DESY Zeuthen, Platanenallee 6, D–15738–Zeuthen, Germany

Abstract. We report on the accuracy of the measurement of the Higgs boson mass that would be achieved in a linear collider operating at a centre-of-mass energy of 350 GeV, assuming an integrated luminosity of 500 fb^{-1}. For that we have exploited the exclusive Higgs decays into b quarks and W bosons. The Higgs mass is determined with an accuracy of about 40 MeV for $m_H = 120$ GeV and 80 MeV for $m_H = 180$ GeV.

INTRODUCTION

The mass of the Higgs boson predicted by the Higgs mechanism [1] is a free parameter of the Standard Model [2]. If the Higgs boson is discovered, the accurate determination of its mass becomes a fundamental issue in the future experiments. The measurement of the Higgs production cross section and its decay branching ratios allows to determine the couplings of the Higgs to the gauge bosons and to the fermions and, therefore, to prove the structure of the Higgs sector.

ANALYSIS

The total cross section of the $e^+e^- \rightarrow ZH$ process can be determined accurately using the recoil mass method [3]. However, this method provides a rather poor measurement of the Higgs boson mass, about 110 MeV for a 120 GeV mass Higgs.

The determination of the Higgs mass is improved significantly by exploiting the kinematics of the decay products of the Higgs and the Z bosons. In particular, we have studied processes with a Higgs boson decaying either into b quarks or W bosons, both for the Z decaying either into quarks or leptons (electrons and muons).

Table 1 lists the final states investigated, indicating their topology in the detector. The numbers quoted are the cross section (in fb) times the branching ratio of each final state for Higgs boson masses of 120, 150 and 180 GeV. The process $ZH \rightarrow q\bar{q}b\bar{b}$ is dominant at lower Higgs masses, while both $ZH \rightarrow q\bar{q}W^+W^-$ and the recoil mass method have the largest statistical power at high mass.

1) On leave from the Institut für Physik der Universität Basel, Switzerland.
The main backgrounds are $e^+e^-\rightarrow q\bar{q}(\gamma)$, W^+W^- and ZZ. Other sources of contamination, like $e^+e^-\rightarrow e^+e^-f\bar{f}$ and $e^+e^-\rightarrow \ell^+\ell^-(\gamma)$, have also been investigated.

This study has been performed for a linear collider operated at a centre-of-mass energy of 350 GeV, assuming an integrated luminosity of 500 fb$^{-1}$. The detector used in the simulation follows the proposal presented in the TESLA Conceptual Design Report [4]. The simulation of the detector is done with the parametric Monte Carlo program SIMDET [5]. Signal and background events are generated with the PYTHIA Monte Carlo program [6], which includes initial state bremsstrahlung. Beamstrahlung is taken into account using the program CIRCE [7].

The selection of events is done using cuts based on lepton identification, track multiplicity and topological variables like Y_{34}, sphericity and Fox-Wolfram moments. The selected events are forced to be of a particular topology ($2\ell + 2$-jets, $2\ell + 4$-jets, 4-jets or 6-jets) using the Cambridge [8] and Durham [9] jet algorithms. Then, a kinematic fit [10] is performed imposing energy and momentum conservation, plus additional constraints depending on the final state under investigation.

The ZH → $\ell^+\ell^−b\bar{b}$ and q$q\bar{b}\bar{b}$ final states

These final states are characterised by two isolated leptons and two jets or four jets. Tracks and calorimetric energy deposits not classified as isolated leptons are grouped into jets. The kinematic fit performed on these events imposes the additional constraint of the invariant mass of the two leptons or two jets assigned to the Z to be equal to the Z mass.

In the 4-jet sample, the signal is enhanced by using the event b-tag [11], which quantifies the number of jets in the event that contain a b quark decay. We assume a b-tag efficiency of 80% independent of the jet energy. The effect in the ZH → q$q\bar{b}\bar{b}$ sample of requiring a minimum number of b-jets in the event is displayed in Figure 1. The background is strongly reduced by requiring the events to contain at least two b-jets, whereas the signal is only slightly affected. The result of the fit for events with b-tag ≥ 2 is also shown in Figure 1. Similar distributions for other masses and channels can be found elsewhere [12].

Table 2 summarises the accuracy on the determination of m_H for the different final states and their combination, for Higgs masses between 120 and 180 GeV. The
FIGURE 1. Left, the invariant mass of the two jets assigned to the Higgs ($m_H = 120$ GeV), in $ZH \rightarrow q\bar{q}q\bar{q}$ events, for different requirements on the b-tag. The dashed lines indicate the background contribution. Right, the result of the fit for events with b-tag ≥ 2.

TABLE 2. Absolute accuracy on the determination of m_H and relative accuracy on the determination of the cross section, for $m_H = 120$, 150 and 180 GeV.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Δm_H in MeV</th>
<th>$\Delta \sigma/\sigma$ in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>recoil mass</td>
<td>110</td>
<td>90</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell^+\ell^-q\bar{q}$</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>$ZH \rightarrow q\bar{q}b\bar{b}$</td>
<td>45</td>
<td>170</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell^+\ell^-W^+W^-, W^\pm \rightarrow q\bar{q}'$</td>
<td>310</td>
<td>160</td>
</tr>
<tr>
<td>$ZH \rightarrow q\bar{q}W^+W^-, W^\pm \rightarrow q\bar{q}'$</td>
<td>250</td>
<td>130</td>
</tr>
<tr>
<td>Combined</td>
<td>38</td>
<td>63</td>
</tr>
</tbody>
</table>

relative accuracies on the cross section are also listed in Table 2.

The $ZH \rightarrow \ell^+\ell^-W^+W^-$ and $q\bar{q}W^+W^-$ final states

We consider W boson decays into two quarks, giving rise to topologies with either two leptons and four jets or six jets. In the case of $ZH \rightarrow \ell^+\ell^-W^+W^-$ events, the invariant mass of the two leptons is required to be consistent with the Z mass. This suppresses most of the background. For $ZH \rightarrow q\bar{q}W^+W^-$ events, the kinematic fit constrains one of the dijets to have the Z mass. In both final states, the remaining two jet pairs are constrained to be consistent with the W mass for $m_H = 180$ GeV, while one dijet is allowed to be off-shell for $m_H = 120$ and 150 GeV.

The mass spectra for the $ZH \rightarrow \ell^+\ell^-W^+W^-$ and $q\bar{q}W^+W^-$ channels, after the kinematic fit, are shown in Figure 2, together with the fit results. The results of
FIGURE 2. The invariant mass, after the kinematic fit, of the four jets assigned to the Higgs decay (left) in the $\text{ZH} \rightarrow \ell^+\ell^-W^+W^-$ final state for $m_H = 150 \text{ GeV}$ and (right) in the $\text{ZH} \rightarrow q\bar{q}W^+W^-$ final state for $m_H = 180 \text{ GeV}$.

the fits are summarised in Table 2, for Higgs masses between 120 and 180 GeV.

REFERENCES

