WHAT CAN WE IMPROVE in HOM MEASUREMENTS with MODULATED BEAM?

Nicoleta Baboi

Reminder of principle
Past problems
What could we do?

DESY, February 25, 2001
Basic principle

Excite mode when: \[\omega_{\text{mod}} = |\omega_i - m \cdot \omega_b| \leq \omega_b/2: \]

\[
\Delta x'_{\text{res max}} = c \frac{e}{E} \delta x_0 \left(q_0 \frac{\omega_b}{2\pi} \right) \frac{\lambda}{\omega_i} \left(\frac{\left(\frac{R}{Q} \right) Q}{l} \right)
\]

Assumptions:
- steady state: bunch train length \(\gg \tau = 2Q/\omega \)
- exactly on resonance
- horizontal polarization

Requirements:
- low energy
- large beam offset
- high average current
- high modulation amplitude
- long bunch train \(\Rightarrow \) reach steady state
- high bunch frequency \(\Rightarrow \) avoid resonance overlap
- low frequency step \(\Rightarrow \) not to miss high-Q modes
Problems in the last measurements

- many quadrupole modes excited much stronger than dipole ones
- instabilities of the beam (position, charge, etc.)
- calibration
- instrumentation limitation

- time and men power
- too much automatization?
What can we improve?

• We need more information!
 ➢ polarization ✓
 ➢ vertical plane
 ➢ check mode character

 ➢ increase BPM resolution

• Possible changes:
 ➢ reduce beam deflection ⇒ avoid quadrupole modes
 • but we lose sensitivity; which can be regained by:
 ➢ increase current
 ➢ increase bunch frequency
 ➢ more sensitive BPMs

• Make complementary measurements (e.g. use two BPMs)

• It needs lots of time! But we have fewer cavities and HOM couplers and a bit more experience
What can we improve? (2)

- Measure \(R/Q \) with BPM
 - HOM couplers
 - no superimposed resonances, as seen at BPM
 - need calibration of cables at higher frequencies

- Will be better prepared
 - know more problems
 - use RF measurements of HOMs \(\rightarrow \) dipoles + quadrupoles?
 (+ monopoles)
5th Dipole Passband Trapped Mode

Prediction for: $f = 3068 \text{ MHz}$, $R/Q = 1.1 \Omega/\text{cm}^2$, $Q = 3.4 \times 10^7$ in cavity C7, as a function of the modulation frequency.