Status of FIR undulator for TTF, Phase 2

M. Yurkov for FIR study group:

A.A. Bytchkov b, H. Eckoldt a, B. Faatz a,
A.A. Fateev b, J. Feldhaus a, K. Floettmann a,
Ch. Gerth a, U. Hahn a, K. Honkavaara a,
M. Koerfer a, O.S. Kozlov b, J. Krzywinski c,
T. Limberg a, E.A. Matyushevsky b, D. Noelle a,
J. Pflueger a, P. Piot a, E. Ploenjes a, J. Rossbach a,
E.L. Saldin a, E.A. Schneidmiller a, S. Schreiber a,
A.V. Shabunov b, K.P. Sytchev b, K. Tiedtke a,
R. Treusch a, F. Ulrich a, M.V. Yurkov b

aDeutsches Elektronen Synchrotron (DESY)
bJINR, Dubna
cInstitute of Physics, Warszawa

Objectives:

- Pump-probe facility combining X-ray SASE FEL radiation and powerful, coherent far infrared radiation.
- Nondestructive electron beam diagnostic allowing to reconstruct bunch profile at a femtosecond-scale resolution.
Potential Upgrade of the FEL User Facility at DESY

VUV/X-ray FEL
\(\lambda = 6-100 \text{ nm} \)

2nd/3rd Harmonic Generation
Wavelength down to 2nm

--- Under Construction
--- Potential upgrade

Pump-probe Facility

Conventional laser system
\(\lambda = 750-900 \text{ nm} \)

FIR Coherent Source
\(\lambda = 100-400 \text{ \mu m} \)

Regenerative FEL Amplifier
\(\lambda = 200-400 \text{ nm} \)

Femtosecond X-ray Source
Pulse duration down to 10 fs
\(E_{ph} = 10-50 \text{ KeV} \)
\(10^7 \text{ photon/pulse} \)
\(B = 10^{13} \text{ ph./sec/mm}^2/\text{mrad}^2/(0.1\% \text{ band.}) \)
Properties of the undulator radiation

- The radiation power, averaged over an ensemble:

\[\langle P(\omega) \rangle = p(\omega)[N + N(N - 1)|\tilde{F}(\omega)|^2] , \]

\(p(\omega) \) is the radiation power from single electron.

- Angular dependence of the radiation frequency of the undulator radiation:

\[\omega = 2ck_w\gamma^2 \left[1 + \frac{K^2}{2} + \gamma^2\theta^2 \right]^{-1} . \]

- Radiation within the cone of half angle

\[\theta_{\text{con}} = \frac{\sqrt{1 + K^2/2}}{\gamma\sqrt{N_w}} \]

has relative spectral bandwidth \(\Delta \omega/\omega \simeq 1/N_w \).

- The energy radiated into the central cone by a single electron:

\[\Delta \mathcal{E}_{\text{con}} \simeq \pi e^2 A_{\parallel}^2 \omega_0 K^2 / [c(1 + K^2/2)] \]

- The coherent radiation enhances the energy radiated into the central cone by a factor of \(N|\tilde{F}(\omega_0)|^2 \).
FIR coherent radiation source at the TESLA Test Facility

Electron beam
- Energy: 400-1000 MeV
- Number of electrons per bunch: 6×10^9
- rms bunch length: 50 μm
- rms normalized emittance: 2π mm·mrad
- rms (VUV FEL induced) energy spread: 2.5 MeV
- Number of bunches per train: 7200
- Repetition rate: 10 Hz

Undulator
- Type: Planar
- Period: 40 cm
- Peak magnetic field: 0–1.2 T
- Number of periods: 10

Output radiation (into central cone)
- Wavelength: 50–300 μm
- Bandwidth: Transform-limited
- Peak power: 1–50 MW
- Average power: 1–50 W
- Micropulse duration (rectangular profile): 2–10 ps
- Micropulse energy: 0.1–0.4 mJ
- Bunch spacing: 111 ns
FIR coherent source at TTF (Phase 2)
FIR undulator at the TESLA Test Facility

Type: planar, electromagnetic
Number of poles 10
Period length 40 cm
Total length 430 cm
Peak magnetic field 0-1.2 T
Power supply for FIR undulator at the TESLA Test Facility

HERA power supply MK 506/4
(available on stock)
1. Iron yoke
2. Support structure.
3. Basic coil.
4. End coil.
5. Column
6. The device for an alignment

<table>
<thead>
<tr>
<th>Area</th>
<th>Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>650mm</td>
<td>4500</td>
</tr>
<tr>
<td>Length</td>
<td>6000mm</td>
<td>4500</td>
</tr>
<tr>
<td>Height</td>
<td>4450mm</td>
<td>4500</td>
</tr>
</tbody>
</table>

Note: The sizes are for information.
Bunch profile at the TESLA Test Facility
(particle tracking and fitting of bunch profile)

\[I(t) \simeq I_0 \exp \left(-\frac{t^2}{2\tau_0^2} \right) \quad \text{for} \quad t_1 > t > -\infty ; \]
\[I(t) \simeq \frac{A \exp(-t/\tau_1)}{\sqrt{(t + t_0)/\tau_1}} \quad \text{for} \quad t > t_1 > 0 . \]
Bunch profile at the TESLA Test Facility
(particle tracking taking into account space charge and CSR)

\[I(t) \simeq I_0 \exp \left(-\frac{t^2}{2\tau_0^2} \right) \quad \text{for} \quad t_1 > t > -\infty ; \]

\[I(t) \simeq \frac{A \exp(-t/\tau_1)}{\sqrt{(t + t_0)/\tau_1}} \quad \text{for} \quad t > t_1 > 0 . \]
Measurement of bunch form-factor

\[\Delta W_{\text{CSR}} \simeq \frac{\pi e^2 A_j^2 \omega_0 K_w^2}{c(1 + K_w^2/2)} N^2 |F(\omega_0)|^2 \]
Reconstruction of bunch profile

\[I(t) \simeq I_0 \exp \left(-\frac{t^2}{2\tau_0^2} \right) \quad \text{for} \quad t_1 > t > -\infty ; \]

\[I(t) \simeq \frac{A \exp (-t/\tau_1)}{\sqrt{(t + t_0)/\tau_1}} \quad \text{for} \quad t > t_1 > 0. \]

Time constant t1 should be taken from streak camera measurements.
Conclusion

✓ Measurements of coherent undulator radiation provide an ideal tool for determination of bunch form-factor with high accuracy.
✓ Combination of these measurements with streak camera measurements, and application of deconvolution technique allows one to reconstruct bunch profile even for the case of strongly non-gaussian shape.
✓ Implementation of this technique at TTF can be realized in a cost effective way.